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Abstract. The study of the screening in the qq̄ plasma, in a model which takes into account only static
interactions, is continued with the introduction of two new dynamical elements: the presence of thermal
gluons and a phenomenological description of the confinement. In the first case the qq correlation and the
qq̄ correlation are similar to each other and also similar to the correlation in the absence of gluons: the de-
cay with the distance deviates slightly from a standard exponential decay. In the second case the two-body
confining potential gives rise to correlation functions oscillating with the distance, so that only the total cor-
relation, i.e. the space integral, has a more transparent interpretation; moreover, the qq correlations and the
qq̄ correlations show very definite differences.

PACS. 24.85.+p; 11.80.La; 25.75.-q

1 Introduction

An analysis of the screening in qq̄ plasma has been pre-
sented in [1], where a model developed in analogy with
the classical treatment of an electric plasma was used [2].
Within the restricted dynamics where we have only quarks
feeling a static interaction coming from single-gluon ex-
change, the two-body correlation was found to decay with
a law slightly different from the standard exponential
decay.
The previous model is widened by proposing two im-

provements. In a first instance, we introduce thermal glu-
ons among the components of the plasma; so, further color
configurations have to be evaluated. Since we are interested
in the comparatively long-distance effects, the relevant dy-
namical feature is, as in [1], the exchange of a virtual gluon
in the t-channel. In the second instance, starting from the
evidence that the confinement is not yet explained in terms
of exchange of one, two, ... virtual gluons, we make use of
a phenomenological confining potential.
The paper contains three main sections. Section 2 re-

views the general formalism which was used in [1] to cal-
culate the correlation functions. An extended summary is
presented together with some small modifications needed
to make it suitable for the next developments. The de-
pendence of the total quark and gluon densities on the
temperature is briefly reviewed: taking a definite quark
population as the initial condition, the gluon population

a e-mail: giorgio@ts.infn.it
b e-mail: ecattar@ts.infn.it

is considered to be of thermal origin and is given in terms
of a Bose–Einstein density, i.e. the gluon population from
which we start does not include the effect of gluon decays
or coalescence implied by the vertices g→ gg and g→ ggg.
The presence of a qq̄ pair is described by a corresponding
Fermi–Dirac density. So, we start from a free quark and
a free gluon population and in the subsequent sections we
estimate some effects of their interactions. Section 3 em-
bodies the extension of the formulation already used for
the qq and qq̄ systems to the qg and q̄g systems. One of
the conclusions is that the introduction of qg and q̄g does
not change the qualitative behavior of the qq and qq̄ sys-
tems: the decay law of the correlations, as a function of
the mutual distance, is not significantly different from an
exponential curve. Hence, the gg interaction mediated by
one-gluon exchange is not expected to give rise to a sig-
nificant modification in the long-distance behavior of the
qq and qq̄ correlations. Its treatment would be conceptu-
ally easy but technically very heavy and will be omitted.
Interactions originated by the four-gluon vertex will not
give rise to long-distance effects. Section 4 is devoted to
the study of the possible effects of confining potentials in
the plasma. The phenomenological potentials are in prin-
ciple two, one which binds the qq̄ pair into a meson and
one which binds the qqq triplet into a baryon. For the first
one, we can use the potential by which the spectrum of
the cc̄ system has been studied [3]; for the qqq system the
potential will be chosen using the diquark model [8] with
the requirement that the quark–diquark binding force be
the same as the quark–antiquark force. The final outcome
is very different from the previous results: a complicated
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shielding and antishielding behavior is found. The space in-
tegral of the correlation functions yields, however, a more
transparent result. There is, in this case, a clear difference
between the qq system and the qq̄ system. After the final
section with the conclusions, two appendices present some
details of the calculations needed.

2 General aspects of the treatment

2.1 Review of the formalism

We begin by reviewing the usual treatment of the elec-
tromagnetic plasma in terms of correlation functions and
extending it to the chromodynamical situation, character-
ized by the presence of non-commuting charges. One starts
from the definition of the canonical partition function

Z =
Z0

V N

∫
e−βU d3Nr, U =

∑
i<j

uij(rij).

The interaction is given by the sum of central two-body po-
tentials and its behavior at rij → 0 must be regular enough
to avoid a divergence of the partition function. The inte-
grand of Z can be expanded in multiple correlations as

e−βU =
∏
l

D(rl)+
∑
i<j

C(2)(ri, rj)
∏
l�=i,j

D(rl)

+
∑
i<j<k

C(3)(ri, rj , rk)
∏
l�=i,j,k

D(rl)+ . . . .

For a uniform plasma, the one-body distribution is a con-
stant:
D(rl) = (Z/Z0)1/N . Themany-body functions C(2), C(3), . . .

are defined as pure correlations, i.e.
∫
C(J) d3rJ = 0. It is

useful to renormalize the functions C(J) = (Z/Z0)J/NC(J),
so that the expressions of the many-body distributions be-
come

W2(ri, rj) =
Z0

ZV N−2

∫
e−βU

∏
l�=i,j

drl = [1+C
(2)(ri, rj)],

(1)

W3(ri, rj , rk) = 1+ [C
(2)(ri, rj)+C

(2)(ri, rk)

+C(2)(rj , rk)]+C
(3)(ri, rj , rk) (2)

and so on. Using then the expressions for W2,W3, one ob-
tains for C ≡ C(2) the following equation:

∂C(r1, r2)

∂r1,v
=

−β

(
∂u12

∂r1,v
+
1

V

∑
l�=1,2

∫
d3rl
[ ∂u12
∂r1,v

C(rl, r2)
])
,

v = x, y, z. (3)

In the non-commutative case the formal definition of the
canonical partition function is the same; however, since

there is a matrix structure in color space, a matrix multi-
plication is implied and a trace must be taken. The inte-
grand of the partition function is expanded into multiple
correlations as in the commutative case and the plasma is
assumed uniform in space and also isotropic in color. The
one-particle distribution is in this way constant in space
and diagonal in the color indices D(qi) =R. The functions
C(J) are again defined as the pure correlations of order J
and we redefine them as C(J) = RJC(J). So for the two-
body distribution we still have an expansion as before, with
W and C, which are matrices in color space. Now we want
to find an equation for the two-body distributionW (qi, qj).
In general, the derivative of U will not commute with U ,
because they are matrices, so we use the representation

d

dt
eA =

∫ 1
0

exA
dA

dt
e(1−x)Adx,

which may be verified by comparing the series expansion of
both sides.
Identifying now A with −βU and defining τ = xβ, dis-

tributions at different temperatures come into play (the
presence of integrations over the inverse temperature is
a well-known feature of quantum statistics [4]); in this way
the variable τ appears in the function Cτ . The equation for
the two-body correlation is then

∂Cβ(r1, r2)

∂r1,v
=−

∫ β
0

dτ

(
∂u12

∂r1,v
+
1

3V

∑
l�=1,2

∫
d3rl

×

[
∂u12

∂r1,v
Cβ−τ (rl, r2)+Cτ(rl, r2)

∂u12

∂r1,v

])
.

After taking the second derivative with respect to r1, be-
cause of the presence of an integration in the inverse tem-
perature τ , the Laplace transformwith respect to β (conju-
gate variable s) is performed; owing to a more general form
of the potential, it is convenient to perform the Fourier
transform with respect to space (conjugate variable k).
With these transformations, the result takes the form

−k2Č(s;k) =
T (k)

s2
+
1

3V s

[ ∑
l�=1,2

T (k)Č(s;k)

+ Č(s;k)T (k)
]
. (4)

Both Č(s;k) and T (k) are color matrices; T (k) is in par-
ticular independent of k in the case of the Coulomb po-
tential. Before proceeding to the explicit color structure,
attention is focused on the thermal distribution of quarks
and gluons.

2.2 Densities of quarks, antiquarks and gluons

When we examine the thermal production of gluons,
we cannot ignore the concurrent production of quark–
antiquark pairs. We investigate briefly the problem in this
form. Assuming the baryonic density, b = ρ− ρ̄, i.e. the
quark density minus the antiquark density, as given, one
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finds the simultaneous production of gluons and of quark–
antiquark pairs. When the quark mass is neglected or is
given as a small correction, the expression for the baryonic
density is simple and it has the following form [4]:

b=
gf

2 π2

∫ ∞
0

dε
(
ε2−

1

2
m2
)[ 1

eβ (ε−µ)+1
−

1

eβ (ε+µ)+1

]
.

(5)

In particular, the antiquark density is given by

ρ̄=
gf

2 π2

∫ ∞
0

dε (ε2− 12m
2)

1+ eβ (ε+µ)

=−
gf

2 π2

[ 2
β3
L3
(
−e−β µ

)
+
m2

2β
ln(1+ e−β µ)

]
,

where Lk(z) =
∑∞
n=1 z

n/nk and for the weight we use
gf = 12, resulting from a factor 2 for the spin, a factor 3 for
the color and a factor 2 for the flavor because we consider
only u and d quarks.
From (5) it follows that

b=
gf

6 π2
µ3+

gf

6 β2
µ−

gf

4 π2
m2 µ.

From this relation we can find the conditions in which the
mass term is negligible: either m� 1/β or m� µ. From
now on we shall assume that at least one of these condi-
tions is fulfilled and the mass term is dropped. Solving the
previous equation for µ, we find

β µ= 3−
2
3

⎡
⎣
(
27 π2 x

gf

)⎛
⎝1+

√
1+

(
π gf

9
√
3 x

)2⎞⎠
⎤
⎦
1
3

−3−
1
3 π2

⎡
⎣
(
27 π2 x

gf

)⎛
⎝1+

√
1+

(
π gf

9
√
3x

)2⎞⎠
⎤
⎦
− 13

with x= b β3. In this way we obtain the actual expression
for ρ̄ in terms of b and β; the total density which appears
in the previous formulae is given by n= b+2ρ̄. It is now
possible to give a semi-quantitative analysis of the different
densities which are relevant for our problem: we start by as-
signing a density b which we take equal to 2 fm−3. In Fig. 1,
Fig. 2 and Fig. 3 the values of βµ, n and the ratio γ/n
as functions of 1/β are shown. We have worked out three
cases: the first is chosen so that the density of antiquarks
is much less than b, we take 1/β = 150MeV, this gives ρ̄≈
1
20 b and for the corresponding gluon density γ/n= 0.40. In
the second case we take 1/β = 300MeV, this gives ρ̄≈ 3

2 b
and γ/n= 0.84. In the third case 1/β = 450MeV is consid-
ered, which produces ρ̄≈ 6b and γ/n= 0.88, which is the
‘saturation’ value for the γ/n ratio. In these expressions
the density of gluons has been taken as the free-boson ther-
mal density, which amounts to

gb

2π2
2

β3
L3(1).

Fig. 1. βµ as a function of 1/β with initial quark density
given by b= 2 fm−3; note that it is an adimensional quantity

Fig. 2. Fermion density n as a function of 1/β with initial
quark density given by b= 2 fm−3

Fig. 3. γ/n ratio as a function of 1/β with initial quark density
given by b= 2 fm−3
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Here gb = 16; i.e. a factor 2 for the spin and a factor 8 for
the color. Since we have βµ→ 0 for β→ 0, in that limit

γ

n
=
gb

2gf

L3(1)

−L3(−1)
=
8

9

and this limit is numerically reached already at
1/β = 390MeV. It is clear that this ratio could be modified
by the inclusion of the gluon self-interaction; in this case,
moreover, the fermion population could also be modified
by production and annihilation processes.

3 Effect of thermal gluons

Since we are interested in the effect of the interaction
at relatively large distance, we choose those terms which
present a singularity in the t-channel, as was already done
for the qq and qq̄ cases. Some details of the proposed dy-
namics are given in Appendix A. In the qg system this
means considering a quark and a gluon interacting through
the exchange of a virtual gluon. The calculations shown be-
low say that the introduction of this term gives a definite
modification of the shielding effect; the resulting shape is
however not very different from the case where only quarks
and antiquarks are present. For this reason the evaluation
of the effect of the gg system, which could be done with the
same procedures here presented, is not performed.
Now we describe the actual calculations. The factors

Č(s; k) and T of (4) are matrices; hence, their order is rel-
evant. In order to proceed it is necessary to state the color
structure of the quarks and of the gluons, so the indices will
now have to be displayed and the precise meaning of T and
Č has to be specified. It is not convenient to work with two
set of indices, for quark and gluon respectively, so the color
charge of the gluon is represented by a traceless tensor with
triplet indices, like Acd with A

n
n = 0.

The term T is specified in this way: the interactions qq
and q̄q̄ are given by

Ib,da,c =
1

2

[
δda δ

b
c−
1

3
δba δ

b
c

]
,

the interaction qq̄ is given by−I; the interaction qg is given
by

Jb,dga,cf =
1

2 i

[
δda δ

b
c δ
g
f − δ

g
a δ
d
c δ
b
f

]
,

the interaction q̄g is given by −J .
The term Č is indicated with different symbols follow-

ing its quark and gluon content and is decomposed ac-
cording to the color structure: for qq and q̄q̄ it is called
respectively Q and Q̄ and decomposed in terms of triplet
and sextet , for qq̄ it is calledM and decomposed into sing-
let and octet while for qg or q̄g it is called B or B̄ and
decomposed into triplet , sextet and 15-plet bymeans of the
following projectors:

3Πb,da,c =
1

2

[
δba δ

d
c − δ

d
a δ
b
c

]
, 6Πb,da,c =

1

2

[
δba δ

d
c + δ

d
a δ
b
c

]
,

1Πb,da,c =
1

3
δda δ

d
a,

8Πb,da,c =

[
δba δ

d
c −
1

3
δda δ

b
c

]
,

3P b,dga,cf =
3

8
δga δ

d
c δ
b
f −
1

8

[
δda δ

g
c δ
b
f + δ

g
a δ
b
c δ
d
f

]
+
1

24
δba δ

g
c δ
d
f ,

6P b,dga,cf =
1

2

[
δba δ

d
c − δ

d
a δ
b
c

]
δgf

−
1

4

[
δga δ

d
c δ
b
f + δ

b
a δ
g
c δ
d
f − δ

g
a δ
b
c δ
d
f − δ

d
a δ
g
c δ
b
f

]
,

15P b,dga,cf =
1

2

[
δba δ

d
c + δ

d
a δ
b
c

]
δgf

−
1

8

[
δga δ

d
c δ
b
f + δ

b
a δ
g
c δ
d
f + δ

g
a δ
b
c δ
d
f + δ

d
a δ
g
c δ
b
f

]
.

The correct normalization of the projector is easily veri-
fied:

1Πf,gf,g = 1,
8Πf,gf,g = 8,

3Πf,gf,g = 3,
6Πf,gf,g = 6,

3P f,g,hf,g,h = 3,
6P f,g,hf,g,h = 6,

15P f,g,hf,g,h = 15.

For the different amplitudes, the equations corresponding
to the general form of (4) are

−k2Qb,da,c =
4 π α

s2
Ib,da,c +

4 π α

s

[(
Qb,ga,f I

f,d
g,c + I

b,g
a,f Q

f,d
g,c

)
ρ

+
(
M b,ga,f

(
− If,dg,c

)
+
(
− Ib,ga,f

)
M̄f,dg,c

)
ρ̄

+
(
Bb,gla,fm J

d,fm
c,gl +J

b,gl
a,fmB

d,fm
c,gl

)
γ
]
,

−k2M b,da,c =−
4 π α

s2
Ib,da,c +

4 π α

s

×
[(
Qb,ga,f

(
− If,dg,c

)
+ Ib,ga,fM

f,d
g,c

)
ρ

+
(
M b,ga,f I

f,d
g,c +(−I

b,g
a,f) Q̄

f,d
g,c

)

ρ̄+
(
Bb,gla,fm (−J

d,fm
c,gl )+J

b,gl
a,fm B̄

d,fm
c,gl

)
γ
]
,

(6)

−k2Bb,dga,cf =
4 π α

s2
Jb,dga,cf +

4 π α

s

×
[(
Qb,ma,l J

l,dg
m,cf + I

b,m
a,l B

l,dg
m,cf

)
ρ

+
(
M b,ma,l (−J

l,dg
m,cf)+ (−I

b,m
a,l ) B̄

l,dg
m,cf)

)
ρ̄
]
.

The coefficients ρ, ρ̄, γ give the densities of quarks, an-
tiquarks and gluons; the equations for Q̄ and B̄ can be
obtained by interchanging Q⇔ Q̄, ρ⇔ ρ̄ and B⇔−B̄ in
the equations for Q and B. It is possible and useful to give
a graphical representation to (6), see Fig. 5, through the
rules set out in Fig. 4; it is consistent with the color struc-
ture to use lower indices for incoming quarks and outgoing
antiquarks and upper indices for incoming antiquarks and
outgoing quarks. Since the gluon color structure is given
in the spinorial version (Appendix A), the gluon is repre-
sented in the form of a qq̄ pair, where up-arrow and down-
arrow are used respectively for quarks and antiquarks. We
recall that the interaction term J is pure imaginary. In the
last equation of (6) it can be seen that B depends linearly
on J . In the equations forM and Q, however, B and J ap-
pear always together and always multiplied by γ, so it is
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Fig. 4. Rules for a graphical interpretation of (6): up and down
arrows indicate respectively quarks and antiquarks while the
gluons are represented in the form of a qq̄ pair (up–down arrow)

useful to perform the substitutions J =−iJ ′ , B =−iB′. In
this way in the last equation we obtain a trivial factor −i,
in the other two we find a change of sign in the terms that
multiply γ. In the whole set of equations (6) this is per-
formed by eliminating the ‘prime’ in J andB and changing
the sign γ→−γ. When we perform the decomposition into
amplitudes of fixed color representation

M = 1Π F1+
8Π F8,

Q= 3Π F3+
6Π F6,

Q̄= 3Π F3+
6Π F̄6,

B = 3P B3+
6P B6+

15P B15,

B̄ = 3P B̄3+
6P B̄6+

15P B̄15

we find, contracting the interaction term J with the projec-
tors P , that the right-hand sides of (6) for the (qq, qq̄, q̄q̄)
systems contain only the Ib,da,c tensor; in fact in any case an
octet is exchanged in the t-channel. In this way the rela-
tions

F8 =−
1

8
F1, F6 =−

1

2
F3, F̄6 =−

1

2
F̄3 (7)

hold as in the case without gluons. From the tedious calcu-
lations presented in Appendix A, it follows that the expres-
sion F1 = F3+ F̄3 is still verified with

F3 = F̄3 = F
(0)
3

+
64 π2 α2 γ

s (k4 s2+6 k2 s π αn+48 π2α2 γ n+8 π2α2 n2)

×

[
1−

2 π αn

k2 s+4 παn

]
(8)

Fig. 5. Graphical representation of (6)

and

F
(0)
3 =

8 π α

3 s (k2 s+4 παn)
;

as it appears from its expression, F
(0)
3 is the amplitude

in the absence of gluons. All the qq̄ correlations may be
expressed in term of F3, so we evaluate its Laplace anti-
transform with the following result:

Ĝβ(k
2) =

2

3n

[
1+

6 γ/n

1+6 γ/n

]

×

[
1− e

− 3π nαβ
k2

(
cos

(
3 π nαβ y

k2

)

−
1−12 γ/n

3 y (1+12 γ/n)
sin

(
3 π nαβ y

k2

))]
,

(9)

where y = 1
3

√
48 γ/n−1 . The inversion of the Fourier

transform leads to an expression that is scarcely transpar-
ent, it is reported for completeness in Appendix A; the cor-
relation function in real space has been computed numer-
ically, by means of standard integration subroutines [5],



444 G. Calucci, E. Cattaruzza: A model for color screening in a QCD plasma

Fig. 6. Correlation function Gβ(r) in absence of gluons for
different choices of temperatures, at fixed coupling constant
α= 0.35 and initial quark density b= 2 fm−3

starting from the following integral:

Gβ(r
2) =

1

2 π2 r

∫ ∞
0

dk k sin(k r) Ĝβ(k
2).

In Fig. 6 and Fig. 7 the correlation function without and
with gluons for different choices of temperature, at fixed
coupling constant α = 0.35 [6] and initial quark density
b = 2 fm−3, is shown. In both cases it can be noted that
the damping of the correlation, if not exponential, differs
very little from that behavior; there is also a long-distance
r region (with r ∼ 6 fm at 1/β = 350MeV), where the cor-
relation begins to oscillate, but the amplitude of these
oscillations is very small, being present when the correla-
tion has already been much damped. The previous plots
give a good overall description of the behavior of the cor-
relation function but do not show immediately how these
functions differ from a Yukawa shape e−µ r/r. In order
to give a more complete description of this property in
Fig. 8, the expression − ln(r Gβ(r)) is plotted. Were the
Yukawa shape exact, we would find a straight line; these
plots confirm that the gluons make the damping weaker,

Fig. 8. Minus logarithm of rGβ(r) with (solid line) and without (dashed line) curves for different choices of temperature, coup-

ling constant α= 0.35 and initial quark density b= 2 fm−3

Fig. 7. Correlation function Gβ(r) in presence of gluons for
different choices of temperatures, at fixed coupling constant
α= 0.35 and initial quark density b= 2 fm−3

moreover the correlation function deviates from a Yukawa
shape a little more than in the absence of gluons. It can
be seen that the effect associated with the gluon presence
is the production, at fixed temperature, of a perceptible
increase in the value of the correlation and consequently
a displacement towards higher r values of the region where
the correlation functions begin to oscillate.
We may consider, also in view of the comparison with

the results presented in the next section, a sort of global
correlation effect by taking the integral over r. The follow-
ing expression is obtained:

∫
d3r Ĝβ(r

2) =
2

3n

[
1+

6 γ/n

1+6 γ/n

]
, (10)

which is just the expression in (9) taken for k→ 0, as it
must be. What is remarkable about this expression is that
there is no explicit dependence on the temperature; nev-
ertheless, a dependence is implicit in the evolution of the
densities n and γ as previously shown. As a general com-
ment, we may say that the actual dependence of the gluon
density on the temperature is, for our treatment, an ex-
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ternal input. If, for instance, the dependence of γ on β
were different, the quantitative result would change but the
main qualitative feature would not.

4 Effects of confinement

In order to study the case in which the confining term plays
a fundamental role, we must redefine our starting point.
The relation between a local field theory and a confined dy-
namics is not wholly elucidated in the continuum, although
relevant steps in that direction may be given [7]. The con-
finement must still be treated in a phenomenological way.
Within this frame there is more than one option: the two
extremes may be described in this way. On one hand we
could use a bagmodel where the confinement is simply pro-
vided by the pressure external to the bag; inside the quarks
and gluons follow a dynamics that can be described in per-
turbative form. In such a situation the local dynamics is
not very far from the one described in the previous section,
so we do not go further in this direction. The other possibil-
ity, that will be considered here, is very different from the
previous one: quarks and gluons are individually subjected
to confining forces which are of the same kind as those
acting inside single hadrons. So, we have two kinds of con-
fining potentials, one binding a qq̄ pair into an uncolored
meson and the other binding a triplet of quarks into an un-
colored baryon. The first case is simpler: we must project
the singlet color state in the s-channel and then give an ex-
plicit form to the confining term. The usual shape for this
potential is spherically symmetric, linearly rising with the
distance: u= r/�2. This form has been long used in study-
ing the meson spectroscopy [3], in particular the bound
state of a heavy qq̄ pair; in this way a quantitative deter-
mination of � is also found. It is useful to remember that the
usual interpretation of the constant force is made in terms
of a color flux string that eventually breaks down giving
rise to a new qq̄ pair. For the coming treatment the dis-
tance at which the string breaks is not relevant, provided
that this happens inside the plasma. In the second case we
should introduce a three-body potential of the form

vabclmn(r1, r2, r3) = ε
abcεlmnf(r1− r2, r1− r3).

Working with the full three-body potential would lead us
to introduce a four-body correlation, to be then reduced to
lower-order correlations; this would lead to a form analo-
gous to but more complicated than (1) and (2). We have
also more uncertainty in the form of the complete po-
tential, so we decide to work with a two-body potential
obtained from the often-used quark–diquark model [8, 9].
This means that we perform the summation over the co-
ordinates of the third quark, we sum over the color index
c = n and then integrate in dr3 over the size of a diquark
subsystem. The potential we obtain in this way represents
the quark–diquark binding potential. In the quoted inter-
pretation of the potential as an effect of a color flux, the
flux between quark and diquark is the same as between
quark and antiquark, so the total interaction should be the

same. We have only to note that we could have chosen ei-
ther the quark ‘2’ or the quark ‘3’ as representative of the
diquark system; in order to take care of this fact the qq
potential is assumed to be one-half of the qq̄ potential.
Since this section is devoted to the study of the confine-

ment, we neglect all other interactions that have already
been examined. The answers we shall find at the end are
very different from those were obtained in the previous
cases.
Now we write the equation for the two-body correla-

tions in the presence of confining potentials:

−k2M b,da,c =−
8 π

s2 k2 l22

1Πb,da,c −
8 π

s k2

×

[(
3Πb,ga,f
9 l23

Mf,dg,c +Q
b,g
a,f

1Πf,dg,c
l22

)
ρ

+

(
1Πb,ga,f

l22
Q̄f,dg,c +M

b,g
a,f

3Πf,dg,c

9 l23

)
ρ̄

]
,

−k2Qb,da,c =−
8 π

9 s2 k2 l23

3Πb,da,c−
8 π

s k2

×

[(
3Πb,ga,f
9 l23

Qf,dg,c +Q
b,g
a,f

3Πf,dg,c
9 l23

)
ρ

+

(
1Πb,ga,f

l22
Mf,dg,c +M

b,g
a,f

1Πf,dg,c

l22

)
ρ̄

]
.

(11)

The meaning of Q, Q̄ and M is the same as before; the
equations for Q̄ can be obtained by interchanging Q⇔ Q̄
and ρ⇔ ρ̄ in the equation for Q.
Projecting out the previous equations, we obtain the

system of equations indicated in Appendix B, (B.1). From
the solution of the previous linear system, for l23 = 2 l

2
2 =

2 l2, it follows that

F3−F6 =
4 π

27 s l4
3 l2 k4 s−191 πρ̄

(k4 s+a21) (k
4 s− b21)

,

F3+2F6 =
4 π

81 s l4
9 l2 k4 s+280 πρ̄

(k4 s+a22) (k
4 s− b22)

,

F1−F8 =
24 π k4

3 l2
1

(k4 s+a21) (k
4 s− b21)

,

F1+8F8 =
24 π k4

3 l2
1

(k4 s+a22) (k
4 s− b22)

, (12)

where the expressions for F̄3− F̄6 and F̄3+2 F̄6 can be ob-
tained from the ones of F3−F6 and F3+2F6 through the
substitution ρ⇔ ρ̄ and

a21 =
2 π

9 l2
(∆
(1)
ρρ̄ +ρ+ ρ̄), b

2
1 =
2 π

9 l2
(∆
(1)
ρρ̄ −ρ− ρ̄),

a22 =
4 π

9 l2
(∆
(2)
ρρ̄ −ρ− ρ̄), b

2
2 =
4 π

9 l2
(∆
(2)
ρρ̄ +ρ+ ρ̄),

where

∆
(1)
ρρ̄ =

√
ρ2+574 ρ ρ̄+ ρ̄2, ∆

(2)
ρρ̄ =

√
ρ2+142 ρ ρ̄+ ρ̄2.
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We must now invert both the Fourier transform and the
Laplace transform; already in performing the first opera-
tion, we meet terms with undamped oscillations which are
the more typical product of the confining potential: we give
here one of such expressions, further details appear in Ap-
pendix B.

(F3−F6)(r, s) =
1

4 π∆
(1)
ρρ̄

1

r s
3
2

[(
b1

2
−
286 π ρ̄

9 b1 l2

)

×

(
cos

(√
b1√
s
r

)
− exp

(
−

√
b1√
s
r

))

+

(
a1+

572 π ρ̄

9 a1 l2

)
exp

(
−

√
a1

2
√
s
r

)

× sin

(√
a1

2
√
s
r

)]
.

In performing the next step, the inversion of the Laplace
transform necessary to regain the dependence on tempera-
ture, a wild oscillatory behavior of the correlation func-
tions is found, that makes the interpretation difficult. The
behavior of the correlation function is anyway given in
Fig. 9.
It is more convenient to perform an integration over

the spatial variables; since we have the expression for the
Fourier transform, the simplest thing to do is to put k= 0
in order to obtain the space integral. However, we have
seen that the integrand in r contains oscillating terms, so
it is not evident that this simple treatment is allowed. For
this reason the ‘dangerous term’ is studied in detail in Ap-
pendix B by putting in an exponential damping term and
finally removing it; we may conclude in this way that the
integrated correlation is finite. In detail, we find two dif-
ferent answers. For the amplitude F3, which gives the qq
correlation, the spatial integral is finite and given by

∫
F3(r) d

3r �
0.41

ρ
.

This result has to be compared with (10); as in the pre-
vious case neither the temperature 1/β nor the dynamical
parameters (l2, α) enter the result; the temperature enters

Fig. 9. r F3 and r F1 for confine-
ment scale 1/β in a neighborhood
of π0 mass and strength constant
l2 = 0.2 fm2 [3]

indirectly through the densities. Contrary to (10), which
contains the total fermionic density n, here only the quark
density ρ enters (and evidently the antiquark density ρ̄ in
the q̄q̄ correlation). As for the amplitude F1, which gives
the qq̄ correlation, the spatial integral is zero; it has how-
ever been remembered that this ‘zero’ is found in the sim-
plified calculations, where neither the thermal gluons nor
the perturbative potential are present.

5 Conclusions

Two aspects of mutual shielding have been examined; the
first amounts to the inclusion of thermal gluons in the ef-
fect of mutual screening in a qq̄ plasma; it refines a pre-
vious analysis given in terms of a pure quark–antiquark
population and it confirms the results. In particular, the
correlation length and the shape of the damping are still
the same for qq and qq̄, so that the shielding effect would
be the same in the meson and in the baryon production.
The second instance begins with a phenomenological in-
troduction of confining potentials. While the qq̄ interaction
is better known, the qq forces present the problem that
a real confinement is produced only when three quarks, in
suitable color states, are put together; this difficulty has
been circumvented by using a quark–diquark model. This
model is consistent with the interpretation of the confine-
ment as due to a color string and moreover it links the
strength of this interaction to the qq̄ interaction. The result
is much more complicated than in the first case. In fact, no
punctual shielding has been found, what may raise doubts
about the whole treatment. Luckily a spatial integration
of the shielding and antishielding effects yields a finite re-
sult, so that the final picture we obtain in this way is much
more simplified. An oscillating behavior was present also
when only the one-gluon potential was considered; it is one
of the qualitative differences from the Abelian case, but in
this case the oscillations begin when the correlation func-
tion is already exponentially small. Conversely, shielding
and antishielding effects are produced, even if we consider
a confining but Abelian potential [10].
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The shielding effect depends on the temperature. This
dependence has two origins: one is the kinematical effect
that is present in every plasma-like system, the other is dy-
namical and typical of a relativistic system, since it comes
from the thermal production of particles, both gluons and
qq̄ pairs. Initially there are more quarks than antiquarks;
however, looking at the evolution of the chemical poten-
tial (Fig. 1), we see that there is an equivalent tempera-
ture, not extremely high, at which the effects of the initial
condition become very small. As we mentioned before, in
order to obtain the result we used thermal densities both
for the quarks and for the gluons. We note that a pos-
sible evolution of those densities induced by the elementary
QCD vertices, which are strongly local, will not give rise to
long-range spatial correlation. An item that requires some
consideration is the comparison with other ways of dealing
with the same phenomenon. The treatment given in terms
of strong coupling on the lattice is difficult to compare
with [11–17], because it is very different from the begin-
ning; more similar are the treatments in terms of thermal
Green function as in [4]. In that case one extracts the
contribution of the pole of the propagator in momentum
space, so that a precise Yukawa-like decay of the corre-
lation function is certainly produced. The more unusual
result, i.e. the presence of an antishielding, was already
foreseen, but in the different situation of an anisotropic
plasma [14]. We have presented here a particular and def-
inite model in which some of the dynamical features, the
static interactions, are put into evidence and worked out
to yield a quantitative result. Some effects that are present
in other treatments are lacking, in particular the hydrody-
namical aspects [18]: does it also contain something more?
Perhaps what is more can be grasped by looking at the
structure of the coupled equations (11): the interaction of
one particle takes place with other particles, which are al-
ready correlated, so that at least at the level of two-fermion
distribution, a self- consistent treatment of the correlations
is performed. But, also we have seen that this approach
allows a common treatment of the perturbative dynamics
in terms of single-gluon exchange and confining potential.
Although there are very interesting attempts in that direc-
tion [7], a common treatment of both processes in terms of
a thermal Green function is not yet available.

Appendix A: Solutions with gluons

A.1 Quark–gluon interaction

As previously stated, only the quark–gluon interaction cor-
responding to a gluon exchange in the t-channel is consid-
ered. In the qg interaction there are clearly other terms,
like in QED for the Compton scattering. They show sin-
gularities either in the s or in the u channel but they are
not relevant for the ‘long-distance’ effects, which we are
interested in. The gluon self-interaction contains both the
3g vertex, which is the building block of the qg and q̄g
terms (B and B̄ in Sect. 3) and the 4g vertex, which does
not yield singularities in the t-channel. For this ampli-
tude the color structure is usually given in mixed form [19]

as fABC(TC)
a
b , where A,B,C = 1, . . . , 8 and a, b = 1, 2, 3.

This form is not convenient here and will be transformed
into a purely spinorial version. Using the fundamental
commutator [TA, TB] = ifABCTC , we express the interac-
tion as a commutator; then defining the matrices with
spinorial indices

(T kl )
a
b =

1
√
2

[
δal δ

k
b −
1

3
δab δ

k
l

]

the form of the interactions used in this paper for qq and for
qg is

Ib,da,c =
1

2

[
δda δ

b
c−
1

3
δba δ

b
c

]
,

Jb,dga,cf =
1

2 i

[
δda δ

b
c δ
g
f − δ

g
a δ
d
c δ
b
f

]
.

Note that the antisymmetry of J with respect to the ex-
change (c, d)↔ (f, g) together with the factor i ensures the
hermiticity of the interaction.

A.2 Derivation of F3 correlation

Starting from (7), we obtain the following system of equa-
tions:

k2 F1−
16 π α

3 s2
+
4 π α

s

×

[
F3 ρ+ F̄3 ρ̄+F1

(
ρ+ ρ̄

2

)

+2
(
B̄3+ B̄6−B3−B6

)
γ

]
= 0,

k2 F3−
8 π α

3 s2
+
4 π α

s

×
[
F3 ρ+F1

( ρ̄
2

)
−2 (B3+B6) γ

]
= 0,

k2 F̄3−
8 π α

3 s2
+
4 π α

s

×
[
F̄3 ρ̄+F1

(ρ
2

)
+2
(
B̄3+ B̄6

)
γ
]
= 0,

(A.1)

where B15 and B̄15 have been substituted by means of the
following relations:

Bx,bdx,ac = B̄
x,bd
x,ac = 0⇒ 3B3+6B6+15B15 = 0,

3B̄3+6B̄6+15 B̄15 = 0.

The system (A.1) yields immediately F1 = F3+ F̄3 and is
reduced to a two-equation system:

F3

[
k2+

4 π α

s

(
ρ+
ρ̄

2

)]
+ F̄3

[
2 π α ρ̄

s

]

−
8 π α

3 s2
−
8 π α

s
γ (B3+B6) = 0,

F3

[
2 π αρ

2 s

]
+ F̄3

[
k2+

4 π α

s

(
ρ̄+
ρ

2

)]

−
8 π α

3 s2
+
8 π α

s
γ (B̄3+ B̄6) = 0.
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From the previous linear system, it follows that F3 and F̄3
can be expressed in terms of (B3+B6) and (B̄3+ B̄6), as
follows:

F3 = F
(0)
3 +f

(1)
3 (B3+B6)+f

(2)
3 (B̄3+ B̄6)f

(2)
3 (B̄3+ B̄6),

(A.2)

where

F
(0)
3 = F̄

(0)
3 =

8 π α

3 s (k2 s+4 παn)
,

f
(1)
3 =

8 π αγ

k2 s+4 παn
+

16 π2 α2 γ ρ̄

(k2 s+4 παn) (k2 s+2 παn)
,

f
(2)
3 =

16 π2 α2 γ ρ̄

(k2 s+4 παn) (k2 s+2 π αn)
,

f̄
(1)
3 =−

16 π2 α2 γ ρ

(k2 s+4 παn) (k2 s+2 παn)
,

f̄
(2)
3 =−

8 π αγ

k2 s+4 παn
−

16 π2 α2 γ ρ

(k2 s+4 παn) (k2 s+2 παn)

and n= ρ+ ρ̄. Furthermore, we obtain

F1 = 2F
(0)
3 +f

(1)
1 (B3+B6)+f

(2)
1 (B̄3+ B̄6),

f
(1)
1 =

8 π αγ (k2 s+4 πα ρ̄)

(k2 s+4 παn) (k2 s+2 παn)
,

f
(2)
1 =−

8 π αγ (k2 s+4 παρ)

(k2 s+4 παn) (k2 s+2 παn)
.

Projecting the equations satisfied byB and B̄ with JP , the
following equations are obtained:

k2B3−
6 π α

s2
+
2 π α

s

×

[
9

4
F3 ρ+

9

8
F1 ρ̄+(B3 ρ− B̄3 ρ̄)

]
= 0,

k2B6−
2 π α

s2
+
2 πα

s

×

[
3

4
F3 ρ+

3

8
F1 ρ̄+(B6 ρ− B̄6 ρ̄)

]
= 0, (A.3)

k2B15+
2 π α

s2
+
2 π α

s

×

[
−
3

4
F3 ρ−

3

8
F1 ρ̄+(B15 ρ− B̄15 ρ̄)

]
= 0.

The equation for B̄3, B̄6 can obtained by the interchange
Bi⇔−B̄i for i= 3, 6, ρ⇔ ρ̄ and F3⇔ F̄3 in the equations
for B3, B6. After some tedious calculations, the following
two equations for (B3+B6) and (B̄3+ B̄6) variables are

obtained:

[
k2+

2 π α

s

(
3 f
(1)
3 ρ+

3

2
f
(1)
1 ρ̄+ρ

)]
(B3+B6)

+

[
2 π α

s

(
3 f
(2)
3 ρ+

3

2
f
(2)
1 ρ̄− ρ̄

)]
(B̄3+ B̄6)

−
8 π α

s2
+
6 π α

s
F
(0)
3 (ρ+ ρ̄) = 0,[

2 π α

s

(
3 f̄
(1)
3 ρ̄+

3

2
f
(1)
1 ρ+ρ

)]
(B3+B6)

+

[
−k2+

2 π α

s

(
3 f̄
(2)
3 ρ̄+

3

2
f
(2)
1 ρ− ρ̄

)]
(B̄3+ B̄6)

−
8 π α

s2
+
6 π α

2 s
F
(0)
3 (ρ+ ρ̄) = 0.

Solving the previous linear system, we have

B3+B6

=
8 π α (k2 s+2 παn)

s (k4 s2+6 k2 s π αn+48 π2α2 γ n+8 π2α2 n2)
,

B̄3+B̄6

=−
8 π α (k2 s+2 παn)

s (k4 s2+6 k2 s π αn+48 π2α2 γ n+8 π2α2 n2)

=−(B3+B6).

Substituting the previous expression into (A.2), we ob-
tain (8).

A.3 Fourier transform inversion

The inversion of the Fourier transform

Gβ(r
2) =

1

(2 π)3

∫
d3k eik·r Ĝβ(k

2)

implies a standard angular integration and then an integral
over the radial coordinates that gives

Gβ(r
2) =

1

2 π2 r

[
g1β 0F2

(
;
1

2
, 2;
3 π nαβ (1− i y)

4
r2
)

+g2β 0F2

(
;
1

2
, 2;
3 π nαβ (1+ i y)

4
r2
)

+ g3β 0F2

(
;
3

2
,
5

2
;
3 π nαβ (1− i y)

4
r2
)

+g4β 0F2

(
;
3

2
,
5

2
;
3 π nαβ (1+ iy)

4
r2
)]
,

(A.4)

where the generalized hypergeometric functions are used:

pFq (a1, . . . , ap ; b1, . . . , bq ; z) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!

(A.5)
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and the coefficients are

g1β =
π2 αβ (i+y)

2 y

(
1+

6 γ/n

1+6 γ/n

)

×

(
1−12 γ/n

3 (1+12 γ/n)
− i y

)
,

g2β =
π2 αβ (−i+y)

2 y

(
1+

6 γ/n

1+6 γ/n

)

×

(
1−12 γ/n

3 (1+12 γ/n)
+ i y

)
,

g3β =

√
3 π n (4 π αβ)3 (1− i y)

3
2 r

12 (i y)

(
1+

6 γ/n

1+6 γ/n

)

×

(
1−12 γ/n

3 (1+12 γ/n)
− i y

)
,

g4β =

√
3 π n (4 π αβ)3 (1+ i y)

3
2 r

12 (−i y)

(
1+

6 γ/n

1+6 γ/n

)

×

(
1−12 γ/n

3 (1+12 γ/n)
+ i y

)
.

(A.6)

The function Gβ(r
2) is real because it is the sum of two

terms with their complex conjugate. Note that for very low
values of 1/β, y could become imaginary; in this case all the
addenda would be separately real.

Appendix B: Confinement

Starting from (11), we extract the color structures; it turns
out that it is more convenient to work with some defi-
nite linear combination: F6−F3, F3+2F6, F1−F8, F1+
8F8, F̄6− F̄3, F̄3+2 F̄6, for which the following system of
equation holds:

A∗F = C, (B.1)

where

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
k2+ 8 π ρ

9 s k2 l23

)
0

(
32 πρ̄

9 s k2 l22

)

0
(
k2− 16 π ρ

9 s k2 l23

)
0(

4π ρ

s k2 l22

)
0

(
k2+ 4π (ρ+ρ̄)

9 s k2 l23

)

0 −
(
8π ρ

s k2 l22

)
0

0 0
(
32 πρ

9 s k2 l22

)
0 0 0

0 0 0

−
(
16πρ̄

9 s k2 l22

)
0 0

0
(
4 π ρ̄

s k2 l22

)
0(

k2− 8π (ρ+ρ̄)
9 s k2 l23

)
0 −

(
8π ρ̄

s k2 l22

)

0
(
k2+ 8π ρ̄

9 s k2 l23

)
0

−
(
16 π ρ

9 s k2 l22

)
0

(
k2− 16 π ρ̄

9 s k2 l23

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F =

⎛
⎜⎜⎜⎜⎜⎝

F3−F6
F3+2F6
F1−F8
F1+8F8
F̄3− F̄6
F̄3+2 F̄6

⎞
⎟⎟⎟⎟⎟⎠
, C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 π
9 s2 k2 l23
8 π

9 s2 k2 l23
8 π

s2 k2 l22
8 π

9 s2 k2 l22
8 π

9 s2 k2 l23
8 π

9 s2 k2 l23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The solutions are given by (12). Taking the Fourier trans-
form of those solutions, we obtain

(F3−F6)(r, s) =
1

4 π∆
(1)
ρρ̄

1

r s
3
2

[(
b1

2
−
286 π ρ̄

9 b1 l2

)

×

(
cos

(√
b1√
s
r

)
− exp

(
−

√
b1√
s
r

))

+

(
a1+

572 π ρ̄

9 a1 l2

)
exp

(
−

√
a1

2
√
s
r

)

× sin

(√
a1

2
√
s
r

)]
,

(F3+2F6)(r, s) =
1

8 π∆
(2)
ρρ̄

1

r s
3
2

[(
b2

2
+
140 π ρ̄

9 b2 l2

)

×

(
cos

(√
b2√
s
r

)
− exp

(
−

√
b2√
s
r

))

+

(
a2−

280 π ρ̄

9 a2 l2

)
exp

(
−

√
a2

2
√
s
r

)

sin

(√
a2

2
√
s
r

)]
,

(F1−F8)(r, s) =
9

2 π∆
(1)
ρρ̄

1

r s
3
2

[
b1

2

(
cos

(√
b1√
s
r

)

− exp

(
−

√
b1√
s
r

))

+a1 exp

(
−

√
a1

2
√
s
r

)

sin

(√
a1

2
√
s
r

)]
,

(F1+8F8)(r, s) =
9

4 π∆
(2)
ρρ̄

1

r s
3
2

[
b2

2

(
cos

(√
b2√
s
r

)

− exp

(
−

√
b2√
s
r

))

+a2 exp

(
−

√
a2

2
√
s
r

)

× sin

(√
a2

2
√
s
r

)]
. (B.2)

At this point, the inversion of the Laplace transform
leads to the increasing oscillations which have also been
shown in Sect. 4. In order to obtain a simpler answer, we
take the space integral of the result. If we had a func-
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tion of r damped at infinity we could simply take, as it
has been noted, the limit k2→∞ in the Fourier trans-
form, but we think that it is necessary to study in detail
the case of the oscillating behavior. From (12) we see, de-
composing the fractions, that the ‘dangerous term’ has the
form

f(r) =

∫
d3k

1

ms

γ

k2
√
s−λ2

eık·r (B.3)

with m, γ , λ positive constants. The Fourier transform
is

f(r) =
2π2γ

ms3/2
1

r
cos(λrs−1/4)

=
2π2γ

ms3/2
1

r

[∑
u

1

(4u)!
(λr)4us−u

−
∑
v

1

(4v+2)!
(λr)4u+2s−v−1/2

]
.

(B.4)

At this point, we perform the inversion of the Laplace
transform, so that we go from the variable s to the variable
β and then integrate term by term in d3r with a damping
factor e−ηr. The final result is

32π2γ
√
β

mη2

[∑
u

u+1/4

Γ (u+3/2)
yu−

∑
v

u+3/4

Γ (u+2)
yv+1/2

]
,

(B.5)

with y = (λ/η)4β. The series can be easily summed to give
finally

32π2γ
√
β

mη2

(
1

4
+y
∂

∂ y

)[
ey
1
√
y
erf(
√
y)−

1
√
y
(ey−1)

]
.

(B.6)

From the asymptotic behavior of the error function 1−
erf
√
x≈ 1√

πx
e−x it follows that the limit η→ 0 is finite and

thus the damping factor can be removed at the end of the

calculations. Therefore, the simple procedure of working
directly on the Fourier transforms is justified.
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